ISSN 1447-2546 (Print) 1447-2554 (On-line)

http://museumvictoria.com.au/about/books-and-journals/journals/memoirs-of-museum-victoria/

Stingray diversification across the end-Cretaceous extinctions

TERRY BERTOZZI^{1,2}, MICHAEL S.Y. LEE^{1,3,*} AND STEPHEN C. DONNELLAN^{1,2}

¹ South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia

² School of Biological Sciences, University of Adelaide, SA 5005, Australia

³ School of Biological Sciences, Flinders University, GPO 2100, Adelaide 5001, Australia

* To whom correspondence should be addressed. E-mail: mike.lee@samuseum.sa.gov.au

Abstract

Bertozzi, T., Lee, M.S.Y. and Donnellan, S.C. 2016. Stingray diversification across the end-Cretaceous extinctions. *Memoirs of Museum Victoria* 74: 379–390.

The evolution of stingrays (Myliobatiformes) is assessed using a new phylogeny with near-complete genus-level sampling, and additional molecular data. Stingrays diversified into three primary clades: (A) river stingrays, round rays and typical stingrays, (B) butterfly rays and stingarees and (C) eagle and manta rays. The enigmatic sixgill and deepwater rays (*Hexatrygon* and *Plesiobatis*) are not basal stingrays, but are part of the second clade. There is extensive clade-specific variation in molecular evolutionary rates across chondrichthyans: the most appropriate (autocorrelated) divergence dating methods indicate that the extant stingray radiation commenced in the late Cretaceous and continued across the K-Pg boundary. This is highly consistent with the fossil record, and suggests that Cretaceous stingrays, being primarily benthic taxa, were less affected by the K-Pg event than taxa inhabiting the water column. The largest pelagic radiation of stingrays (myliobatids: eagle and manta rays) evolved very shortly after the K-Pg boundary, consistent with rapid ecological expansion into newly-vacated pelagic niches.

Keywords molecular phylogeny, divergence dating, molecular clock, mass extinctions, Chondrichthyes, Batoidea, Myliobatoidea, cartilaginous fish.

Introduction

Stingrays (Myliobatiformes) are one of the most species-rich (>200) clades of cartilaginous fish (Chondrichthyes), with many economically and medically relevant taxa, and considerable ecological diversity and importance (e.g. marine and freshwater, benthic macropredators and pelagic filterfeeders). Their monophyly is robustly supported by extensive molecular sequence data (e.g. Aschliman et al., 2012a) and numerous evolutionary novelties (such as the caudal sting, and loss of ribs: Carvalho et al., 2004). However, relationships between the major groups (~10 families) of stingrays remain uncertain, in contrast to the rest of the generally well-resolved chondrichthyan tree (Aschliman et al., 2012a). Molecular genetic analyses have not robustly resolved the affinities of the long-branch taxon Hexatrygon, while the monophyly of several genera (e.g. Dasyatis, Himantura sensu stricto) remains relatively untested.

The tempo of stingray diversification also requires further investigation. The earliest well-supported crown myliobatoids occur in the late Cretaceous (~70Ma: Claeson et al., 2010), and the first taxa described from relatively complete fossils are not known until Eocene (Carvalho et al., 2004). In contrast, molecular divergence dating suggests the crown-clade radiated substantially earlier (~87–104 Ma: Aschliman et al., 2012a).

Here, we present a taxonomically and genetically expanded analysis of stingray diversification, with relaxed-clock analyses that account for the substantial clade-specific rate variation. Our enlarged molecular analysis is more congruent with the fossil data, with both sources of evidence suggesting that crown stingrays diversified shortly before the K-Pg bolide impact and were not greatly affected by the resultant extinctions, radiating immediately afterwards into vacated pelagic niches.

Materials and methods

Taxon sampling. Taxon sampling included 97 chondrichthyan species including 48 stingrays (adding 54 new taxa in total to the matrix of Aschliman et al., 2012a). The new matrix includes all stingray genera except one from the Myliobatidae (*Aetomylaeus*) and two from the Pomatotrygonidae (*Paratrygon* and *Plesiotrygon*). We sequenced partial gene fragments of mitochondrial ND4 (705bp; 51 taxa), nuclear RAG1 (1418bp; 22 taxa) and one new locus, nuclear POMC (800bp; 71 taxa). PCR primer details for each locus are presented in table 1. Voucher information and GenBank accession numbers for all the taxa included in the analysis are available in supplementary table S1.

Primer name Gene		Primer sequence 5' to 3'	Source		
ND4	ND4	CACCTATGACTACCAAAAGCTCATGTAGAAGC	Arevalo et al. 1994		
L11424-ND4	ND4	TGACTTCCWAAAGCCCATGTAGA	Inoue et al. 2001		
H12293-Leu	tRNA-Leu	TTGCACCAAGAGTTTTTGGTTCCTAAGACC	Inoue et al. 2001		
POMC-F	POMC	AGCCATTTCCGCTGGAACAA	Todd Reeder ^a		
G1009F	POMC	ATCCCCAATCTACCCYGGCAA	This study		
G1010R	POMC	GACCATCCTTGAYGATGACATTCC	This study		
G1030R	POMC	TGRCCATCCTTGAYGATGACAT	This study		
G1280F	POMC	AAGCCAGCTTCAGCCYATYGAAGA	This study		
G1299F	POMC	GTGGAMAAGAAMMTSGAATCCCCAAT	This study		
G1300F	POMC	ATGTAYTGATGSCTGCAAAGTGGA	This study		
G1428F	POMC	GAGAMCATCMGGAATTAYGTCATGGG	This study		
G1510R	POMC	CCTAAARAGRGTCARYAGAGGKTTCTGRC	This study		
G1550F	POMC	GAGGTGTGTAGCAATGGGCAGAG	This study		
G1552R	POMC	ATTCCTGAAGAGGGTGAGCAGTG	This study		
Of2fu	RAG1	CTGAGCTGCAGCCAGTATCATAAAATGT	Holcroft 2004		
G1027F	RAG1	GTTACCMGGTTATTRTTCATTYGA	This study		
G1028R	RAG1	ATTCATTSCCTTCACTKGCCC	This study		
Chon-Rag1-R029	RAG1	AGTGTACAGCCARTGATGYTTCA	Iglésias et al. 2005		
G1204R	RAG1	GATTKGTGCGCCAAAYTTCATAGC	This study		
G1206F	RAG1	CACRGGGTATGATGARAAGCTGGT	This study		

Table 1. Names and sequences of primers used for PCR and sequencing in this study.

^aPrimer sequence provided by Todd Reeder, San Diego State University, San Diego, CA.

Alignment. The additional *ND4* and *RAG1* sequences were aligned against the alignment blocks provided in Aschliman et al., (2012a). *POMC* sequences were aligned using MAFFT v6.587b (Katoh and Toh 2008) and the alignment refined by eye. The full alignment (with MrBayes partitioning and MCMC commands) is available as supplementary Appendix 1.

Phylogenetic Analyses. The alignment was analysed using MrBayes v3.2.1 (Ronquist et al., 2012), using relaxed-clock (dated) and clock-free (topology only) methods. The optimal partitioning scheme and substitution models were selected using the Bayesian Information Criterion in PartitionFinder (Lanfear et al., 2012). The relaxed-clock dated analyses used internal calibrations similar to calibrations 1-9 in Aschliman et al. (2012a); these were employed as offset exponentials using the same hard minimum and soft 95% maximum.

However, the root age constraint (chondrichthyans: holocephalan-elasmobranch divergence) was substantially reinterpreted. Recent molecular phylogenetic analyses (Inoue et al. 2011, Licht et al. 2012) found crown ages of \sim 421 and \sim 413 Ma respectively for crown chondrichthyans, but this could have been influenced by their hard minimum on this

divergence of 410 Ma. The hard minimum was based on Coates and Sequiera (2001), who provisionally accepted the attribution of *Stensioella* to Holocephala and thus to crown Chondrichthyes. However, the phylogenetic affinities of *Stensioella* are highly contentious and it could be a placoderm, i.e. not a holocephalan at all (e.g. Long 2011). Phylogenetic affinities of other putative early holocephalans (e.g. *Melanodus*: Darras et al. 2008) are similarly equivocal. In fact, the oldest uncontroversial chondrichthyan, based on articulated remains, is the same age as *Stensioella* (Miller et al. 2003), and this is a stem rather than a crown chondrichthyan (Davis et al. 2012), and so lies outside the root node in our tree.

A more conservative interpretation of the elasmobranch fossil record indicates that robust fossil evidence for crown chondrichthyans, i.e. the root node of our tree, extends only to 300my: "crown chondrichthyan neurocranial specializations can be traced back to at least the Upper Carboniferous (300 Mya) (e.g., *Iniopera* for euchondrocephalans and *Tristychius* for euselacians). Stem holocephalans can be traced back to at least the Upper Carboniferous, while stem neoselachians can be traced back to either the Late Permian (250 Mya) based on the putative fossil record of Synechodontiformes, or the Late Carboniferous if *Cooleyella* is a neoselachian" (Pradel et al. 2011, citations omitted). For this reason, we place a wide flat prior on root age (i.e. crown chondrichthyans) of 300–425mya, which encompasses conservative (300) and liberal (410) minimum palaeontological dates, and the molecular estimate (421) based on the latter. In practice, this prior on the root had little effect on the clade of interest (stingrays), because of other more proximal calibrations. Removing this prior did not appreciably change the resultant dates in stingrays or in batoids in general.

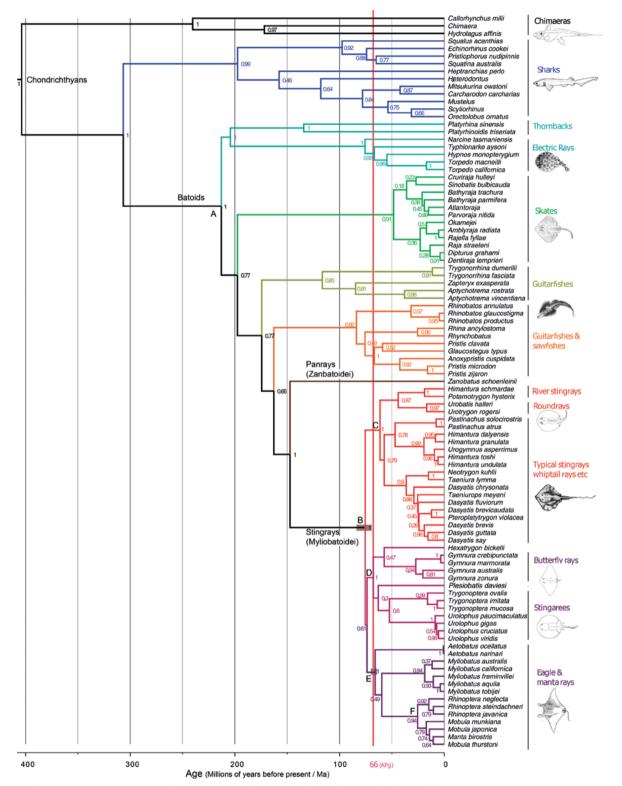
MrBayes enforces monophyly of calibrated nodes, but these nodes were all generally obtained with high support in the (topologically unconstrained) clock-free analyses (see below). The TK autocorrelated relaxed clock (Thorne and Kishino 2002) was used, as it was strongly favoured by stepping-stone analyses (Ronquist et al., 2012) over both the uncorrelated relaxed clock (igr) or strict clock (Bayes Factor comparsion *sensu* Kass and Raftery 1995). Because saturation of fast-evolving sites can distort divergence times by compressing basal nodes (e.g. Soubrier et al. 2012), the dating analyses were performed with (1) the entire nuclear and mitochondrial data, (2) with mtDNA third codon positions deleted, and (3) with all mtDNA deleted (i.e. nuclear only).

Analyses employed 4 runs (each with 4 chains - 1 cold and 3 heated), with 40 million steps, sampling every 4000, with a burnin of 20% confirmed as adequate (sampled topologies were essentially identical across runs with standard deviation of clade frequencies ~0.01 or less; samples for numerical parameters were also essentially identical, with variance between vs within runs approaching unity (Ronquist et al., 2012). The majority-rule consensus tree was obtained from the combined post-burnin samples.

Results and discussion

The dated (fig. 1) and undated (fig. 2) analyses with the nuclear and mitochondrial data (first and second codons) retrieved very similar tree topologies. Support values from the dated analysis are mentioned below; however, all relationships discussed are also found in the undated analysis, and in analyses with all nuclear and mitochondrial data or only nuclear data. These phylogenetic conclusions are thus robust to methods used and to data subsampling.

Relationships between the major clades of chondrichthyans are similar to those found recently based on molecular data (Aschliman et al., 2012a), as expected due to overlapping genes used; many are also highly concordant with morphological evidence (Aschliman et al. 2012b). As with the previous study, monophyly of batoids (fig. 1 clade A), skates, thornbacks+electric rays, and stingrays is supported; guitarfishes form two clades on the stingray stem, with sawfishes nested within one of these clades; and panrays are the sister group to stingrays. Relationships within stingrays (fig 1 clade A), however, are now resolved more robustly: the following relationships have posterior probabilities of 1.0. Stingrays form three primary clades (fig.1), (C) potamotrygonids (river stingrays), urotrygonids (round rays) and dasyatids (typical stingrays, whiptail rays, etc.), (D) *Hexatrygon* (sixgill stingray), gymnurids (butterfly rays), urolophids (stingarees) and *Plesiobatis* (deepwater stingray), and (E) myliobatids (eagle and manta rays), in agreement with Naylor et al., (2012). Within the myliobatid clade, *Aetobatus* is recovered as sister to all other sampled myliobatids. In contrast, previous work weakly retrieved *Hexatrygon* and *Plesiobatis* as basal stingrays (Aschliman et al., 2012a) and molecular and morphological analyses recovered *Aetobatus* as nested within myliobatids (reviewed in Aschliman, 2014).


The monophyly of several genera is refuted or at least questioned. "*Himantura*" schmardae (which often enters freshwater) is again confirmed (pp=1.0) as related to neotropical freshwater stingrays (fide Lovejoy, 1996; Aschliman et al., 2012; Naylor et al., 2012), and distant from other dasyatids including other (core) *Himantura*. Core *Himantura* and *Dasyatis* are again also both strongly inferred to be paraphyletic (i.e. grades) (Naylor et al., 2012); each has an apomorphic, monotypic genus (*Urogymnus* and *Pteroplatytrygon* respectively) nested inside with high support (PP>0.95). *Mobula* is also inferred to be paraphyletic with respect to *Manta*, in agreement with recent morphological (Adnet et al., 2012) and molecular studies (Aschliman, 2011; Naylor et al., 2012; Poorvliet et al., 2015) but with lower support.

The branch lengths from the undated analyses of elasmobranchs (fig. 2) suggested extensive rate variation that is phylogenetically autocorrelated (related species tend to share similar rates) and consequently the autocorrelated TK model (Thorne and Kishino, 2002) was a better fit than the uncorrelated IGR model. All the dated analyses using the preferred TK model retrieved similar divergence dates within stingrays (table 2); discussion will focus on the tree from the nuc+mt data excluding mt third codons (fig. 1), but other subsets of the data produced qualitatively the same results. The major clades of batoids diverged 200-140Ma. Stingrays diverged from their sister group (*Zanobatus*, panrays) ~147Ma, but do not diversify until about ~76Ma.

Table 2. Age of various clades of rays based on autocorrelated relaxed clock (TK) analyses of three different subsets of the molecular data: all nuclear and mitochondrial, nuclear and mitochondrial first & second codons only (tree in Fig. 1), and nuclear only. Mean (and 95% highest posterior density interval) divergence dates in Ma are shown. Letters in parentheses are discussed in the text and refer to nodes in Fig 1.

	nuc + all mito	nuc + mito 1&2	nuc only
Batoids (A)	230.9	215.8	174
	(146.7-274.8)	(167.8-268.7)	(160-193.6)
Stingrays (B)	74.3	76.2	73.2
	(69.4-80.3)	(69.5-84.1)	(67-92.8)
Myliobatids (E)	66.6	66.7	67
	(65-69.9)	(65-70.5)	(65-70.5)
Mobulines (F)	30.2	26.2	40.2
	(16.7-43.4)	(12.5-40.4)	(27.9-51.5)

T. Bertozzi, M.S.Y. Lee and S.C. Donnellan

Figure 1. Dated molecular phylogeny of elasmobranchs, with emphasis on stingrays (Myliobatoidei), based on an autocorrelated relaxed clock (TK) analysis of the nuclear and mitochondrial data (excluding third codons). Numbers at nodes are posterior probabilities, node heights are mean estimated ages; the K-Pg extinction (66Ma) is marked with a red line. Stingray clades A-F are discussed in text. Node bars indicate 95% HPDs for stingrays and myliobatids (eagle and manta rays). Images are all public domain and from NOAA except for shark (Tony Ayling), whiptail (Pearson Foresman), stingaree and chimaera (both copyright expired).

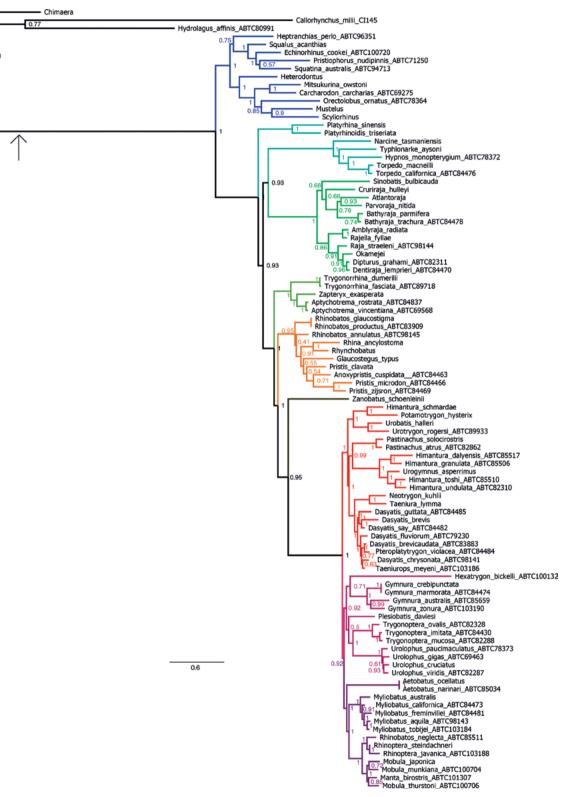


Figure 2. Molecular phylogeny of elasmobranchs, with emphasis on stingrays (Myliobatiformes), based on undated (clock-free) analysis of the nuclear and mitochondrial data (excluding third codons). Numbers at nodes are posterior probabilities; branch lengths proportional to inferred divergence (see scale). The rooting could be anywhere along the arrowed branch (tree here is arbitrarily rooted at left end of this branch). For full details of specimen numbers, see table S1.

This long stem lineage leading to a much younger crown radiation is consistent with (a) low diversity throughout the Cretaceous, with diversification only occurring shortly before the K-Pg boundary. However, it could also be generated even with high diversities throughout the Cretaceous, if (b) the end-Cretaceous mass extinctions (~66Ma) extinguished many archaic stingrays, leaving only a few closely-related lineages to cross the Paleogene boundary, or (c) continuously high speciation and extinction rates throughout the Cretaceous generated high taxon turnover (e.g. Crisp and Cook, 2009; Rabosky, 2010). These scenarios can be difficult to test using only molecular phylogenies, and are better tested against the fossil record (Rabosky, 2010), which is most consistent with scenario (a). Throughout most of the Cretaceous, stingrays are neither abundant nor diverse, and taxa robustly assigned to the crown-clade (i.e. using quantitative methods) are first known in the late Cretaceous, when several taxa appear simultaneously (Claeson et al., 2010). There is no major drop in stingray diversity at the K-Pg boundary, with fossils suggesting Myliobatis actually survived across the boundary (e.g. Claeson et al., 2010; Guinot et al., 2012). Scenarios (b) and (c), in contrast, entail a very different fossil pattern, predicting the existence of numerous morphologically and taxonomically diverse archaic (stem) stingrays which suffer extinction either at the K-Pg boundary (b) or throughout the Cretaceous (c).

The retrieved dates are broadly consistent with previous work (e.g. Aschliman et al. 2012a), again expected due to overlapping genes and calibrations. There are some notable differences, however. Diversification within skates (Rajiodea) is more recent (~50Ma cf ~80Ma). Also, the late Cretaceous (~76Ma) radiation of crown stingrays (Myliobatiformes) is younger than previously proposed (~90Ma), and more congruent with the oldest well-supported crown stingrays, which appear ~70 mya as part of a late Cretaceous pulse of diversification across elasmobranchs in general (Guinot et al., 2012). In typical sharks this diversification was soon curtailed by the K-Pg extinctions, but rays and skates were less affected (Guinot et al., 2012). The bolide impact more strongly affected surface (rather than benthic) food webs, by curtailing surface productivity and/or initiating surface acidification, though there is evidence for rapid ecosystem recovery (e.g. Alegret et al., 2012). Intriguingly, the inferred age of the largest pelagic radiation of rays (myliobatids: Eagle and Manta Rays) coincides almost exactly with the K-Pg extinctions (fig. 1), consistent with immediate radiation of benthic K-Pg survivors into vacated surface ecospace. Within myliobatids, we estimate that mobulines (Manta+Mobula) split from rhinopterines only ~26 million years ago (Fig. 1 F) which is in agreement with other studies using similar calibration points (Aschliman et al., 2012a, Poorvliet et al., 2015). This late divergence is not consistent with the placement of the genus Burnhamia (Palaeocene onwards) on the mobuline stem (Adnet et al., 2012); these fossils were attributed to the mobuline stem on the basis of one trait related to dental occlusion (Adnet et al., 2012), and the possibility that they fall outside the mobulinerhinopterine split needs to be investigated.

Overall, these results suggest that the species richness of modern stingrays is attributable to both a late Cretaceous pulse followed shortly by survivorship of benthic forms across the K-Pg boundary, which would have enhanced opportunities for immediate subsequent diversification into vacated pelagic habitats.

Acknowledgements

We are grateful to all who provided tissue samples (names listed in table S1). We also thank F. Marques for providing *ND4* sequences for *Potamotrygon*. Funding was provided by a Sea World Research and Rescue Foundation Incorporated grant to SCD and a Sir Mark Mitchell Research Foundation grant to TB. e-Research SA provided high-performance computing resources.

Data Accessibility

Table S1 (tissue sources, museum voucher specimens and Genbank numbers) follows the References, and Appendix 1 (alignment in MrBayes format) is available as ESM from the *Memoirs of Museum Victoria* website.

References

- Adnet,S., Cappetta, H., Guinot, G. and Notarbartolo di Sciara, G. 2012. Evolutionary history of the devilrays (Chondrichthyes: Myliobatiformes) from fossil and morphological inference. *Zoological Journal of the Linnean Society* 166. 132–159.
- Alegret, L., Thomas, E. and Lohmanne, K.C. 2012. End-Cretaceous marine mass extinction not caused by productivity collapse. *Proceedings of the National Academy of Sciences of the United States of America* 109: 728–732.
- Arevalo, E., Davis, S.K. and Sites, J.W. 1994. Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the *Sceloporus grammicus* complex (Phrynosomatidae) in central Mexico. *Systematic Biology* 43: 387–418.
- Aschliman, N.C. 2011. The batoid tree of life: recovering the patterns and timing of the evolution of skates, rays and allies (Chondrichthyes: Batoidea). Dissertation, Florida State University.
- Aschliman, N.C., Nishida, M., Miya, M., Inoue, J. G., Rosana, K.M. and Naylor G.J.P. 2012a. Body plan convergence in the evolution of skates and rays (Chondrichthyes: Batoidea). *Molecular Phyogenetics and Evoution* 63: 28–42.
- Aschliman, N.C., Claeson, K.M and McEachran, JD. 2012b. Phylogeny of Batoidea. Pp. 57–89 in: Carrier, J.C., Musick, J.A. and Heithaus, M.R (eds), *Biology of Sharks and Their Relatives* (second edition). CRC Press.
- Aschliman, N.C. 2014. Interrelationships of the durophagous stingrays (Batoidea: Myliobatidae). *Environmental Biology of Fishes* 97: 967–979.
- Carvalho, M.R., Maisey, J.G. and Grande, L. 2004. Freshwater stingrays of the Green River Formation of Wyoming (early Eocene), with the description of a new genus and species and an analysis of its phylogenetic relationships (Chondrichthyes, Myliobatiformes). Bulletin of the American Museum of Natural History 284: 1–136.
- Claeson, K.M., O'Leary, M.A., Roberts, E.M., Sissoko, F., Bouaré, M., Tapanila, L., Goodwin, D., and Gottfried, M.D. 2010. First Mesozoic record of the stingray *Myliobatis wurnoensis* from Mali and a phylogenetic analysis of Myliobatidae incorporating dental characters. *Acta Palaeontologica Polonica* 55: 655–674.

- Coates, M.I. and Sequeira, S.E.K. 2001. A new stethacanthid chondrichthyan from the Lower Carboniferous of Bearsden, Scotland. *Journal of Vertebrate Paleontology* 21,438-459.
- Crisp, M.D. and Cook, L.G. 2009. Explosive radiation or cryptic mass extinction? Interpreting signatures in molecular phylogenies. *Evolution* 63: 2257–2265.
- Darras, L., Derycke, C., Blieck, A. and Vachard, D. 2008. The oldest holocephalan (Chondrichthyes) from the Middle Devonian of the Boulonnais (Pas-de-Calais, France). *Comptes Rendus Palevol* 7, 297–304.
- Davis, S. P. J. A. Finarelli, M. I. Coates. 2012. Acanthodes and sharklike conditions in the last common ancestor of modern gnathostomes. Nature 486, 247–250.
- Guinot, G., Adnet, S. and Cappetta, H. 2012. An analytical approach for estimating fossil record and diversification events in sharks, skates and rays. *PLoS One* 7(9): e44632.
- Holcroft, N.I. 2004. A molecular test of alternative hypotheses of tetraodontiform (Acanthomorpha: Tetraodontiformes) sister group relationships using data from the RAG1 gene. *Molecular Phylogenetics and Evolution* 32: 749–760.
- Iglésias, S.P., Lecointre, G. and Sellos, D.Y. 2005. Extensive paraphylies within sharks of the order Carcharhiniformes inferred from nuclear and mitochondrial genes. *Molecular Phylogenetics* and Evolution 34: 569–583.
- Inoue, J.G., Miya, M., Tsukamoto, K. and Nishida, M. 2001. A mitogenomic perspective on the basal teleostean phylogeny: resolving higher-level relationships with longer DNA sequences. *Molecular Phylogenetics and Evolution* 20: 275–285.
- Kass, R.E. and Raftery, A.E. 1995. Bayes Factors. Journal of the American Statistical Association 90: 773–795.
- Katoh, K. and Toh, H. 2008. Recent developments in the MAFFT multiple sequence alignment program. *Briefings in Bioinformatics* 9: 286–298.
- Lanfear, R., Calcott, B., Ho, S.Y.W. and Guindon, S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. *Molecular Biology* and Evolution 29: 1695–1701.
- Licht, M., Schmuecker, K., Huelsken, T., Hanel, R., Bartsch, P. and Paeckert, M. 2012. Contribution to the molecular phylogenetic analysis of extant holocephalan fishes (Holocephali, Chimaeriformes). Oragnisms, Diversity and Evolution 12: 421–432.

- Long, J.A. 2011. The Rise of Fishes: 500 Million Years of Evolution (Second Edition). Hopkins University Press, Baltimore, 287 pp.
- Lovejoy, N.R. 1996. Systematics of myliobatoid elasmobranchs: with emphasis on the phylogeny and historical biogeography of neotropical freshwater stingrays (Potamotrygonidae: Rajiformes). Zoological Journal of the Linnean Society 117: 207–257.
- Miller, R.F, Cloutier, R. and Turner, S. 2003. The oldest articulated chondrichthyan from the Early Devonian period. *Nature* 425, 501–4.
- Naylor, G.J.P., Caira, J.N., Jensen, K., Rosana, K.A.M., Straube, N. and Lakner, C. 2012. Elasmobranch Phylogeny: A Mitochondrial Estimate Based on 595 Species. Pp. 31–56 in: Carrier, J.C., Musick, J.A. and Heithaus, M.R. (eds), *Biology of Sharks and Their Relatives* (second edition). CRC Press.
- Pradel, A., Tafforeau, P., Maisey, J.G. and Janvier, P. 2011. A new Paleozoic symmoriiformes (Chondrichthyes) from the Late Carboniferous of Kansas (USA) and cladistic analysis of early chondrichthyans. *PLoS One* 6(9): e24938.
- Poortvliet, M., Olsen, J.L., Croll, D.A., Bernardi, G., Newton, K., Kollias, S., O'Sullivan, J., Fernando, D., Stevens, G., Magaña, F.G., Seret, B., Wintner, S. and Hoarau, G. 2015. A dated molecular phylogeny of manta and devil rays (Mobulidae) based on mitogenome and nuclear sequences. *Molecular Phylogenetics and Evolution* 83: 72–85
- Rabosky, D.L. 2010. Extinction rates should not be estimated from molecular phylogenies. *Evolution* 6: 1816–1824.
- Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. and Huelsenbeck, J.P. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology* 61: 539–542.
- Sabaj Perez, M.H. (editor). 2013. Standard symbolic codes for institutional resource collections in herpetology and ichthyology: an Online Reference. Verson 4.0 (28 June 2013). Electronically accessible at http://www.asih.org/, American Society of Ichthyologists and Herpetologists, Washington, DC.
- Soubrier J., Steel, M., Lee, M.S.Y., Der Sarkissian, C., Guindon, S., Ho, S.Y.W., Cooper, A. and The Genographic Consortium. 2012. The influence of rate heterogeneity among sites on the time dependence of molecular rates. *Molecular Biology and Evolution* 29: 3345–3358.
- Thorne, J.L. and Kishino, H. 2002. Divergence time and evolutionary rate estimation with multilocus data. Systematic Biology 51: 689–702.

Table S1. Voucher and GenBank accession number for all taxa included in the analysis. Specimens sequenced as part of our study are indicated. We thank the following people for tissues: Andrew Bentley, University of Kansas; Jonathan Sandoval-Castillo, Macquarie University; Jenny Giles, Tom Kashiwagi & Vera Schluessel, University of Queensland; Samuel Iglésias, *Museum* of *Natural History* Paris; Eric Lewallen, University of Toronto; Mark McGrouther, Australian Museum; Jenny Ovenden & Stirling Peverell, QDPI; Theodore Pietsch, UWBM; David Vaughan, Two Oceans Aquarium; Terry Walker & Mattias Braccini, MAFRI; William White, CSIRO; Ian Whittington & Leslie Chisholm, South Australian Museum and the myriad of other collectors who have lodged tissues with the Australian Biological Tissue Collection, South Australian Museum. Institutional Abbreviations as per Sabaj Perez (2013).

Taxon	mt genome	RAG1	SCFD2	ND4	РОМС	Voucher	this study
Family Anacanthobatidae							
Cruriraja hulleyi	JN184057	JN184104	JN184146				
Sinobatis bulbicauda	JN184078		JN184147			CSIROH6417-04	
Family Arhynchobatidae							
Atlantoraja castelnaui ^c	JN184055	JN184105				INIDEP-T0406d	
Atlantoraja cyclophora ^c			JN184148			INIDEP-T0474d	
Bathyraja parmifera	JN184056	JN184106	JN184149				
Bathyraja trachura				KT187484	KT187463	KU28471	Х
Pavoraja nitida	JN184067	JN184107	JN184150				
Family Dasyatidae							
Dasyatis brevis ^c	JN184058	JN184114	JN184157			BJ_564e	
Dasyatis brevis ^c					KT187416	ABTC89931 ^a	Х
Dasyatis brevicaudata		KT187539		KT187487	KT187445	ABTC83883	X
Dasyatis chrysonota				KT187488	KT187446	ABTC98141	х
Dasyatis fluviorum		KT187540		KT187489	KT187447	ABTC79230	х
Dasyatis guttata				KT187490	KT187448	ABTC84485	х
Dasyatis say		KT187541		KT187491	KT187449	KU30237	Х
"Himantura schmardae"	JN184062	JN184126	JN184169			ROM66845	
Himantura dalyensis		KT187543		KT187498	KT187451	ABTC85517	Х
Himantura granulata				KT187499	KT187452	ABTC85506	Х
Himantura toshi		KT187544		KT187500	KT187453	ABTC85510	Х
Himantura undulata		KT187545		KT187501	KT187454	AMS I.39533-003	Х
Neotrygon kuhlii ^c	JN184065	JN184115	JN184158			BO_424e	
Neotrygon kuhlii ^c					KT187417	ABTC79231	Х
Pteroplatytrygon violacea		KT187542		KT187516	KT187450	ABTC84484	Х
Pastinachus solocirostris	JN184066	JN184116	JN184159			KA_44e	
Pastinachus atrus		KT187550		KT187512	KT187472	ABTC82862	Х
Taeniura lymma ^c	JN184079	JN184117	JN184160			BO_122e	
Taeniura lymma ^c					KT187418	SAMAF9731	Х
Taeniurops meyeni				KT187524	KT187460	ABTC103186	Х
Urogymnus asperrimus ^c	JN184084	JN184118	JN184161				
Urogymnus asperrimus ^c					KT187419	ABTC84266	Х
Family Gymnuridae							
Gymnura crebripunctata	JN184060	JN184119	JN184162			BJ_637e	
Gymnura australis		KT187547		KT187495	KT187456	ABTC85659	Х
Gymnura marmorata		KT187548		KT187496	KT187468	KU28376	х
Gymnura zonura				KT187480	KT187461	ABTC103190	Х

Taxon	mt genome	RAG1	SCFD2	ND4	РОМС	Voucher	this study
Family Hexatrygonidae							
Hexatrygon bickelli ^c	JN184061	JN184120	JN184163			UFTAI-074	
Hexatrygon bickelli ^c					KT187420	MNHP2005-2746	Х
Family Mobulidae							
Mobula japanica ^c	JN184063	JN184122	JN184165			BJ_773e	
Mobula japanica ^c					KT187421	ABTC84483	X
Mobula munkiana				KT187505	KT187441	ABTC100704	X
Mobula thurstoni				KT187506	KT187442	ABTC100706	х
Family Myliobatidae							
Aetobatus ocellatus	JN184054	JN184121	JN184164			AU_41e	
Aetobatus narinari				KT187479	KT187462	ABTC85034	X
Myliobatis australis ^c	JN184064	JN184123	JN184166				
Myliobatis australis ^c					KT187422	ABTC82333	Х
Myliobatis aquila				KT187507	KT187436	ABTC98143	X
Myliobatis californica		KT187538		KT187508	KT187437	KU28359	Х
Myliobatis freminvillei				KT187509	KT187438	KU29698	X
Myliobatis tobijei				KT187510	KT187439	ABTC103184	X
Manta birostris ^c				KT187504	KT187440	ABTC101307	X
Manta alfredi ^c		FJ235624					
Family Narcinidae							
Narcine tasmaniensis	JN171594	JN184094	JN184136				
Family Narkidae							
Typhlonarke aysoni	JN184082	JN184096	JN184138				
Family Plesiobatidae							
Plesiobatis daviesi ^c	JN184070	JN184125	JN184168				
Plesiobatis daviesi ^c					KT187424	MNHP2005-2743	Х
Family Platyrhinidae							
Platyrhina sinensis ^c	JN184068	JN184111	JN184154				
Platyrhina sinensis ^c					KT187414	UF159203	X
Platyrhinoidis triseriata ^c	JN184069	JN184112	JN184155				
Platyrhinoidis triseriata ^c					KT187415	ABTC99921	Х
Family Potamotrygonidae							
Potamotrygon hystrix	JN184071	JN184127	JN184170			PU_1e	
Family Pristidae							
Pristis clavata	JN184072	JN184097	JN184139			AU_15e	
Pristis microdon		KT187551		KT187514	KT187473	ABTC84466	х
Pristis zijsron				KT187515	KT187475	ABTC84469	х
Anoxypristis cuspidata				KT187481	KT187427	ABTC84463	X

Family Rhinidae Rhina ancylostoma ^c JN184074 JN184099 JN184141 Rhina ancylostoma ^c KT187409 Family Rhinobatidae KT187409 Glaucostegus typus ^c JN184059 JN184098 Glaucostegus typus ^c KT187408 Rhinobatos glaucostigma ^c KT187408 Rhinobatos glaucostigma ^c JN184075 JN184075 JN184100 JN18408 JN184142 Rhinobatos glaucostigma ^c KT187408 Rhinobatos annulatus KT187518 Rhinobatos productus KT187520 Trygonorrhina dumerilit ^{h, c} JN184081 Trygonorrhina dumerilit ^{h, c} JN184081 Trygonorrhina fasciata KT187528 Zapteryx exasperata ^c JN184087 JN184103 JN184145 Zapteryx exasperata ^c KT187482 Aptychotrema vincentiana KT187482 KT187482 KT187483 KT187482 KT187483 Family Rhinopteridae KT187423 Rhinoptera steindachneri ^e JN184076 Rhinoptera steindachneri ^e KT187521 <	Voucher	this study
Amblyraja radiata*JN184108JN184151Dipturus grahamiKT187493KT187465Dentiraja lemprieriKT187492KT187466Okamejei cf,bocsemani*JN184109JN184152Okamejei kenojei*NC007173JN184110JN184153Rajella fyllaeJN184073Rajella fyllaeJN184073Raja straeleniKT187517KT187476Family RhindaeRina ancylostoma*JN184074JN184099Rhina ancylostoma*JN184074JN184099JN184141Rhina ancylostoma*JN184075JN184099JN184140Glaucostegus typus*JN184075JN184098JN184140Glaucostegus typus*JN184075JN184009JN184142Rhinobatos glaucostigma*JN184075JN184100JN184142Rhinobatos gnaccostigma*JN184075JN184102JN184142Rhinobatos groductusKT187518KT187428Trygonorrhina dumerilit ^{a, c} JN184081JN184102JN184144Trygonorrhina fasciataKT187528KT187452Zapteryx exasperata*JN184087JN184103JN184145Zapteryx exasperata*JN184076JN184103JN184167RhinopteriaeKT187482KT187452KT187453Aptychotrema rostrataKT187452KT187453Rhinoptera steindachneri*JN184076JN184167Rhinoptera steindachneri*JN184076JN184167Rhinoptera al pavanica*KT187521KT187443Rhinoptera neglectaKT187519KT187444<		
Dipturus grahamiKT187493KT187465Dentiraja lemprieriKT187492KT187465Okamejei cf.boesemani*JN184109JN184152Okamejei kenojef*NC007173JN184110JN184153Rajela fyllaeJN184073Rajela fyllaeJN184073Raja straeleniKT187517KT187517Family RhinidaeKT187517KT187409Family RhinobatidaeKT187409JN184074Glaucostegus typus*JN184075JN184098JN184059JN184098JN184140Glaucostegus typus*JN184075JN184100JN184075JN184100JN184142Rhinobatos glaucostigma*KT187518KT187518KT187429Rhinobatos mnulatusKT187520KT187410JN184142Trygonorrhina dumerilit ^{b, c} JN184081JN184081JN184102JN184081JN184103JN184184KT187428Trygonorrhina dumerilit ^{b, c} KT1874528KT187452KT187452Zapteryx exasperata*JN184087JN184081JN184103JN184184KT187483KT187452KT187453Aptychotrema rostrataKT187452KT187453KT187453Family RhinopteridaeKT187521Rhinoptera steindachneri*JN184124JN184075JN184124JN184075JN184124JN184075JN184124JN184075KT187521KT187423Rhinoptera agionica*KT187423Rhinoptera steindachneri* </td <td></td> <td></td>		
Dentiraja lemprieriKT187492KT187466Okamejei cf.boesemani*JN184109JN184152Okamejei kenojei*NC007173JN184110JN184153Raja straeleniKT187517KT187476Family RhinidaeKT187517KT187476Family RhinobatidaeKT187409JN184074Rhina ancylostoma*JN184074JN184099JN184074JN184099JN184141Rhina ancylostoma*KT187409Family RhinobatidaeKT187409Glaucostegus typus*JN184059JN184098JN184059JN184075JN184098Glaucostegus typus*JN184075JN184100Rhinobatos glaucostigma*KT187518KT187408Rhinobatos glaucostigma*KT187518KT187429Rhinobatos productusKT18750KT187428Trygonorrhina dumerilit ^{8, c} KT187528KT187452Trygonorrhina dumerilit ^{8, c} KT187452KT187452Zapteryx exasperata*JN184087JN184103JN184145Zapteryx exasperata*KT187452KT187453Aptychotrema vincentianaKT187458KT187458Family RhinopteridaeKT187423KT187453Rhinoptera steindachneri*JN184076JN184124JN184167KT187423KT187423Rhinoptera agiavanica*KT187520KT187423Rhinoptera agiavanica*AY949029KT187519Rhinoptera neglectaKT187519KT187444	MCZ159184	
Okamejei cf.boesemani*JN184109JN184152Okamejei kenojei*NC007173JN184110JN184153Rajella fyllaeJN184073Raja straeleniKT187517Raja straeleniKT187517KT187476Family RhinidaeKT187476Rhina ancylostoma*JN184074JN184099JN184074JN184099JN184141Rhina ancylostoma*KT187409Family RhinobatidaeKT187409Glaucostegus typus*JN184059JN184098JN184075JN184098JN184140Glaucostegus typus*KT187408Rhinobatos glaucostigma*JN184075JN184075JN184100JN184142Rhinobatos glaucostigma*JN184075JN184081JN184102JN184142Rhinobatos productusKT187520KT187520KT187428Trygonorrhina dumerilit ^{h, c} KT187452Trygonorrhina dumerilit ^{h, c} JN184103JN184087JN184103JN184145Zapteryx exasperata*Zapteryx exasperata*KT187428KT187488KT187483KT187488KT187483KT187488KT187483KT187488KT187423RhinopteriaeKT187521KT187423KT187521Rhinoptera i avanica*AY949029Rhinoptera neglectaKT187519KT187444	AMS I.40275-003	х
Okamejei kenojei*NC007173JN184110JN184153Rajella fyllaeJN184073KT187517KT187476Family RhinidaeKT187517KT187476Family RhinobatidaeKT187409JN184099JN184141Rhina ancylostoma*JN184074JN184099JN184141Rhina ancylostoma*JN184074JN184099JN184141Rhina ancylostoma*KT187409KT187409Family RhinobatidaeKT187409KT187408Glaucostegus typus*JN184059JN184098JN184140Glaucostegus typus*JN184075JN184100JN184142Rhinobatos glaucostigma*KT187518KT187410Rhinobatos glaucostigma*KT187518KT187429Rhinobatos groductusKT187518KT187428Trygonorrhina dumerilit**JN184081JN184102JN184144Trygonorrhina dumerilit**JN184087JN184103JN184145Zapteryx exasperata*JN184087JN184103JN184145Zapteryx exasperata*JN184087JN184103JN184145Zapteryx exasperata*KT187452KT187458Family RhinopteridaeKT187483KT187458Family RhinopteridaeKT187423KT187423Rhinoptera steindachneri*JN184076JN184124Rhinoptera aglacca*KT187521KT187423Rhinoptera aglectaAY949029KT187519Rhinoptera neglectaKT187444	ABTC84470	Х
Rajella fyllaeJN184073Raja straeleniKT187517KT187476Family RhinidaeKT187517KT187476Family RhinobatidaeKT187409Glaucostegus typus ^c JN184074JN184099JN184141Rhina ancylostoma ^c KT187409Family RhinobatidaeKT187409Glaucostegus typus ^c JN184059JN184098JN184140Glaucostegus typus ^c JN184059JN184098JN184140Glaucostegus typus ^c KT187408KT187408Rhinobatos glaucostigma ^c JN184075JN184100JN184142Rhinobatos glaucostigma ^c JN184075JN184100JN184142Rhinobatos annulatusKT187518KT187429Rhinobatos productusKT187520KT187428Trygonorrhina dumerilit ^{h, c} JN184081JN184102JN184144Trygonorrhina dumerilit ^{h, c} KT187528KT187452Zapteryx exasperata ^c JN184087JN184103JN184145Zapteryx exasperata ^c KT187482KT187453Aptychotrema vincentianaKT187453KT187453Family RhinopteridaeKT187423KT187423Rhinopteria steindachneri ^c KT187423KT187423Rhinopteria favanica ^c KT187423KT187423Rhinopteria aluanica ^c KT187423KT187521KT187443Rhinoptera neglectaAY949029Rt187519KT187444	BO_410e,KA_336e	
Raja straeleni KT187517 KT187476 Family Rhinidae IN184074 JN184099 JN184141 Rhina ancylostoma ^c JN184074 JN184099 JN184141 Rhina ancylostoma ^c KT187409 JN184141 Rhina ancylostoma ^c KT187409 JN184140 Glaucostegus typus ^c JN184059 JN184098 JN184140 Glaucostegus typus ^c JN184075 JN184100 JN184142 Rhinobatos glaucostigma ^c KT187408 KT187518 KT187408 Rhinobatos glaucostigma ^c JN184075 JN184100 JN184142 Rhinobatos glaucostigma ^c KT187420 KT187520 KT187428 Rhinobatos productus KT187520 KT187428 KT187428 Trygonorrhina dumerilit ^{h, c} JN184081 JN184102 JN184144 Trygonorrhina fasciata KT1874528 KT187452 KT187452 Zapteryx exasperata ^c JN184087 JN184103 JN184145 Zapteryx exasperata ^c KT187482 KT187458 KT187458 Aptychotrema vincentiana KT187483 KT187458 KT187458 Family Rhinopteridae		
Raja straeleniKT187517KT187476Family RhinidaeIN184074JN184099JN184141Rhina ancylostoma ^c JN184074JN184099JN184141Rhina ancylostoma ^c KT187409Family RhinobatidaeKT187409Glaucostegus typus ^c JN184059JN184098JN184140Glaucostegus typus ^c JN184075JN184009JN184142Rhinobatos glaucostigma ^c KT187408KT187408Rhinobatos glaucostigma ^c KT187410JN184142Rhinobatos glaucostigma ^c KT187518KT187429Rhinobatos productusKT187520KT187428Trygonorrhina dumerilii ^{b, c} JN184081JN184102JN184144Trygonorrhina fasciataKT187528KT187452Zapteryx exasperata ^c JN184087JN184103JN184145Zapteryx exasperata ^c KT187483KT187453Aptychotrema rostrataKT187452KT187453Rhinoptera steindachneri ^e JN184076JN184124JN184167Rhinoptera steindachneri ^e KT187433KT187433Rhinoptera ijavanica ^e AY949029KT187519KT187443Rhinoptera neglectaKT187519KT187444		
Rhina ancylostoma*JN184074JN184099JN184141Rhina ancylostoma*KT187409Family RhinobatidaeKT187409Glaucostegus typus*JN184059JN184098JN184140Glaucostegus typus*KT187408Rhinobatos glaucostigma*JN184075JN184009JN184142Rhinobatos glaucostigma*JN184075JN184100JN184142Rhinobatos glaucostigma*KT187518KT187410Rhinobatos glaucostigma*KT187518KT187429Rhinobatos annulatusKT187520KT187428Trygonorrhina dumerilit ^{h, c} JN184081JN184102JN184144Trygonorrhina dumerilit ^{h, c} JN184081JN184102JN184144Trygonorrhina fasciataKT187528KT187459Zapteryx exasperata*JN184087JN184103JN184145Zapteryx exasperata*KT187482KT187457Aptychotrema vincentianaKT187483KT187458Family RhinopteridaeKT187408KT187423Rhinoptera steindachneri*JN184076JN184124JN184167Rhinoptera javanica*AY949029KT187521KT187443Rhinoptera neglectaAY949029KT187519KT187444	ABTC98144	Х
Rhina ancylostoma ^c JN184074JN184099JN184141Rhina ancylostoma ^c KT187409Family RhinobatidaeKT187409Glaucostegus typus ^c JN184059JN184098JN184140Glaucostegus typus ^c KT187408KT187408Rhinobatos glaucostigma ^c JN184075JN184100JN184142Rhinobatos glaucostigma ^c JN184075JN184100JN184142Rhinobatos glaucostigma ^c KT187518KT187410Rhinobatos productusKT187518KT187520KT187429Rhinobatos productusKT187520KT187428Trygonorrhina dumerilii ^{b, c} JN184081JN184102JN184144Trygonorrhina fasciataKT187528KT187429Zapteryx exasperata ^c JN184087JN184103JN184145Zapteryx exasperata ^c JN184087JN184103JN184145Aptychotrema vincentianaKT187482KT187458Family RhinopteridaeKT187423KT187423Rhinoptera steindachneri ^c JN184076JN184124JN184167Rhinoptera favanica ^c KT187521KT187423Rhinoptera neglectaAY949029KT187519KT187444		
Family RhinobatidaeGlaucostegus typus*JN184059JN184098JN184140Glaucostegus typus*KT187408Rhinobatos glaucostigma*JN184075JN184100JN184142Rhinobatos glaucostigma*KT187518KT187410Rhinobatos annulatusKT187518KT187520KT187429Rhinobatos productusKT187520KT187520KT187428Trygonorrhina dumerilit ^{b, c} JN184081JN184102JN184144Trygonorrhina dumerilit ^{b, c} KT187528KT187428Trygonorrhina fasciataKT187528KT187459Zapteryx exasperata*JN184087JN184103JN184145Zapteryx exasperata*KT187482KT187457Aptychotrema rostrataKT187483KT187458Family RhinopteridaeKT18767KT187521KT187423Rhinoptera steindachneri*JN184076JN184124JN184167Rhinoptera fayanica*AY949029KT187519KT187444Rhinoptera neglectaKT187519KT187444	NT_111e	
Glaucostegus typus ^c JN184059JN184098JN184140Glaucostegus typus ^c KT187408Rhinobatos glaucostigma ^c JN184075JN184075JN184100JN184142KT187408Rhinobatos glaucostigma ^c KT187410Rhinobatos glaucostigma ^c KT187518Rhinobatos glaucostigma ^c KT187518Rhinobatos glaucostigma ^c KT187518Rhinobatos productusKT187520Rhinobatos productusKT187520Trygonorrhina dumerilii ^{h, c} JN184081JN184081JN184102JN184081JN184102JN184081JN184103JN184144Trygonorrhina fasciataKT187528KT187452Zapteryx exasperata ^c JN184087JN184087JN184103JN184145Zapteryx exasperata ^c KT187482KT187413Aptychotrema rostrataKT187482KT187483KT187458Family RhinopteridaeKT187423Rhinoptera steindachneri ^e JN184076Rhinoptera javanica ^c KT187423Rhinoptera neglectaKT187519KT187519KT187444	AMS I.40552-001	Х
Glaucostegus typus ^c JN184059JN184098JN184140Glaucostegus typus ^c KT187408Rhinobatos glaucostigma ^c JN184075JN184075JN184100JN184142KT187408Rhinobatos glaucostigma ^c KT187410Rhinobatos glaucostigma ^c KT187518Rhinobatos glaucostigma ^c KT187518Rhinobatos glaucostigma ^c KT187518Rhinobatos productusKT187520Rhinobatos productusKT187520Trygonorrhina dumerilii ^{h, c} JN184081JN184081JN184102JN184081JN184102JN184081JN184103JN184144Trygonorrhina fasciataKT187528KT187452Zapteryx exasperata ^c JN184087JN184087JN184103JN184145Zapteryx exasperata ^c KT187482KT187413Aptychotrema rostrataKT187482KT187483KT187458Family RhinopteridaeKT187423Rhinoptera steindachneri ^e JN184076Rhinoptera javanica ^c KT187423Rhinoptera neglectaKT187519KT187519KT187444		
Glaucostegus typus ^c KT187408Rhinobatos glaucostigma ^c JN184075JN184100JN184142Rhinobatos glaucostigma ^c KT187518KT187410Rhinobatos annulatusKT187518KT187429Rhinobatos productusKT187520KT187428Trygonorrhina dumerilii ^{h, c} JN184081JN184102JN184144Trygonorrhina dumerilii ^{h, c} KT187528KT187429Zapteryx exasperata ^c JN184087JN184103JN184145Zapteryx exasperata ^c JN184087JN184103JN184145Aptychotrema rostrataKT187482KT187457Aptychotrema vincentianaKT187483KT187458Family RhinopteridaeKT18765KT187423Rhinoptera steindachneri ^e JN184076JN184124JN184167Rhinoptera lavanica ^e AY949029KT187519KT187444Rhinoptera neglectaKT187519KT187444	AU_1e	
Rhinobatos glaucostigma ^c JN184075JN184100JN184142Rhinobatos glaucostigma ^c KT187518KT187410Rhinobatos annulatusKT187518KT187429Rhinobatos productusKT187520KT187428Trygonorrhina dumerilii ^{b, c} JN184081JN184102JN184144Trygonorrhina dumerilii ^{b, c} KT187528KT187428Zapteryx exasperata ^c JN184087JN184103JN184145Zapteryx exasperata ^c JN184087JN184103JN184145Aptychotrema rostrataKT187482KT187457Aptychotrema vincentianaKT187483KT187483Family RhinopteridaeKT18765KT187423Rhinoptera steindachneri ^c JN184076JN184124JN184167Rhinoptera agivanica ^c AY949029KT187519KT187444Rhinoptera neglectaKT187519KT187444	ABTC79227	х
Rhinobatos glaucostigma ^c KT187410Rhinobatos annulatusKT187518KT187429Rhinobatos productusKT187520KT187429Rhinobatos productusKT187520KT187428Trygonorrhina dumerilii ^{h, c} JN184081JN184102JN184144Trygonorrhina fasciataKT187528KT187459Zapteryx exasperata ^c JN184087JN184103JN184145Zapteryx exasperata ^c JN184087JN184103JN184145Zapteryx exasperata ^c KT187482KT187457Aptychotrema rostrataKT187482KT187458Family RhinopteridaeKT18765KT187423Rhinoptera steindachneri ^c JN184076JN184124JN184167Rhinoptera far a steindachneri ^c AY949029KT187519KT187444Rhinoptera neglectaKT187519KT187444	BJ_733e	
Rhinobatos annulatusKT187518KT187429Rhinobatos productusKT187520KT187429Rhinobatos productusKT187520KT187428Trygonorrhina dumerilii ^{b, c} JN184081JN184102JN184144Trygonorrhina fasciataKT187528KT187459Zapteryx exasperata ^c JN184087JN184103JN184145Zapteryx exasperata ^c JN184087JN184103JN184145Zapteryx exasperata ^c JN184087JN184103JN184145Zapteryx exasperata ^c KT187452KT187457Aptychotrema rostrataKT187483KT187458Family RhinopteridaeKT187423KT187423Rhinoptera steindachneri ^c JN184076JN184124JN184167Rhinoptera fascinda ^{ch} AY949029KT187521KT187443Rhinoptera neglectaKT187519KT187444	ABTC100713	Х
Rhinobatos productusKT187520KT187428Trygonorrhina dumerilii ^{b, c} JN184081JN184102JN184144Trygonorrhina dumerilii ^{b, c} KT187428KT187412Trygonorrhina fasciataKT187528KT187459Zapteryx exasperata ^c JN184087JN184103JN184145Zapteryx exasperata ^c JN184087JN184103JN184145Zapteryx exasperata ^c KT187482KT187457Aptychotrema rostrataKT187482KT187457Aptychotrema vincentianaKT187483KT187458Family RhinopteridaeKT18765KT187423Rhinoptera steindachneri ^c JN184076JN184124JN184167Rhinoptera faidachneri ^c AY949029KT187521KT187443Rhinoptera neglectaKT187519KT187444	ABTC98145	X
Trygonorrhina dumerilii ^{b, c} JN184081JN184102JN184144Trygonorrhina dumerilii ^{b, c} KT187412Trygonorrhina fasciataKT187528KT187528KT187459Zapteryx exasperata ^c JN184087JN184087JN184103Zapteryx exasperata ^c KT187457Zapteryx exasperata ^c KT187482KT187482KT187457Aptychotrema rostrataKT187483KT187483KT187458Family RhinopteridaeKT187465Rhinoptera steindachneri ^c JN184076Integra feat gavanica ^c KT187521KT187423KT187521Rhinoptera bonasus ^c AY949029Rhinoptera neglectaKT187519KT187444	ABTC83909	X
Trygonorrhina dumerilii*.cKT187412Trygonorrhina fasciataKT187528Zapteryx exasperatacJN184087JN184087JN184103Zapteryx exasperatacKT187459Zapteryx exasperatacKT187482Aptychotrema rostrataKT187482Aptychotrema vincentianaKT187483Family RhinopteridaeKT187457Rhinoptera steindachnericJN184076Rhinoptera steindachnericKT187423Rhinoptera javanicacKT187521KT187443KT187521Rhinoptera neglectaKT187519KT187444	CSIROH6346-22	
Trygonorrhina fasciataKT187528KT187459Zapteryx exasperata ^c JN184087JN184103JN184145Zapteryx exasperata ^c KT187413Aptychotrema rostrataKT187482KT187457Aptychotrema vincentianaKT187483KT187458Family RhinopteridaeRhinoptera steindachneri ^c JN184076JN184124Rhinoptera steindachneri ^c KT187521KT187423Rhinoptera javanica ^c AY949029KT187519KT187444Rhinoptera neglectaKT187519KT187444	ABTC82335	Х
Zapteryx exasperatacJN184087JN184103JN184145Zapteryx exasperatacKT187413Aptychotrema rostrataKT187482Aptychotrema vincentianaKT187483Family RhinopteridaeKT187483Rhinoptera steindachnericJN184076JN184076JN184124JN184167KT187423Rhinoptera steindachnericKT187423Rhinoptera javanicacKT187521KT187443KT187521Rhinoptera neglectaKT187519KT187444	ABTC89718	Х
Zapteryx exasperatacKT187413Aptychotrema rostrataKT187482Aptychotrema vincentianaKT187483Family RhinopteridaeKT187483Rhinoptera steindachnericJN184076Inoptera steindachnericKT187423Rhinoptera javanicacKT187423Rhinoptera bonasuscAY949029Rhinoptera neglectaKT187519KT187444	BJ_694e	
Aptychotrema rostrataKT187482KT187457Aptychotrema vincentianaKT187483KT187458Family RhinopteridaeKT187483KT187458Rhinoptera steindachneri ^c JN184076JN184124JN184167Rhinoptera steindachneri ^c KT187521KT187423Rhinoptera javanica ^c KT187521KT187443Rhinoptera bonasus ^c AY949029KT187519KT187444	 ABTC83911	X
Aptychotrema vincentiana KT187483 KT187458 Family Rhinopteridae Family Rhinopteridae KT187483 KT187458 Rhinoptera steindachneri ^c JN184076 JN184124 JN184167 KT187423 Rhinoptera steindachneri ^c KT187521 KT187423 KT187443 Rhinoptera javanica ^c AY949029 KT187519 KT187444 Rhinoptera neglecta KT187519 KT187444	ABTC84837	X
Rhinoptera steindachnericJN184076JN184124JN184167Rhinoptera steindachnericKT187423Rhinoptera javanicacKT187521KT187443Rhinoptera bonasuscAY949029KT187519KT187444	SAMAF9368	х
Rhinoptera steindachnericJN184076JN184124JN184167Rhinoptera steindachnericKT187423Rhinoptera javanicacKT187521KT187443Rhinoptera bonasuscAY949029KT187519KT187444		
Rhinoptera steindachnericKT187423Rhinoptera javanicacKT187521Rhinoptera bonasuscAY949029Rhinoptera neglectaKT187519KT187444	BJ_595e	
Rhinoptera javanicacKT187521KT187443Rhinoptera bonasuscAY949029Rhinoptera neglectaKT187519KT187444	ABTC100715	X
Rhinoptera bonasus ^c AY949029 Rhinoptera neglecta KT187519	ABTC103188	X
Rhinoptera neglectaKT187519KT187444		
Family Rhynchobatidae	ABTC85511	Х
Rhynchobatus djiddensis JN184077 JN184101 JN184143	AU_75e	
Rhynchobatus laevis KT187411	AMS I.40490-002	X
Family Torpedinidae		
Torpedo macneilli JN184080 JN184095 JN184137		
Torpedo californica KT187523 KT187478	KU29260	X
Hypnos monopterygius KT187549 KT187503 KT187469	ABTC78372	X

Stingray diversification across the end-Cretaceous extinctions

Taxon	mt genome	RAG1	SCFD2	ND4	РОМС	Voucher	this study
Family Urolophidae							
Urolophus cruciatus ^c	JN184085	JN184129	JN184172				
Urolophus cruciatus ^c					KT187426	SAMAF9366	X
Urolophus gigas		KT187535		KT187529	KT187433	SAMAF9354	X
Urolophus paucimaculatus		KT187536		KT187530	KT187434	ABTC78373	X
Urolophus viridis		KT187537		KT187531	KT187435	ABTC82287	Х
Trygonoptera imitata		KT187533		KT187525	KT187430	ABTC84430	Х
Trygonoptera mucosa				KT187526	KT187431	SAMAF9571	X
Trygonoptera ovalis		KT187534		KT187527	KT187432	ABTC82328	Х
Family Urotrygonidae							
Urobatis halleri ^c	JN184083	JN184128	JN184171			BJ_554e	
Urobatis halleri ^c					KT187425	ABTC89952	X
Urotrygon rogersi		KT187546		KT187532	KT187455	ABTC89933	X
Family Zanobatidae							
Zanobatus schoenleinii	JN184086	JN184113	JN184156			SE_173e	
OUTGROUP TAXA							
Family Callorhinchidae							
Callorhynchus milii ^c		AAVX01004067					
Callorhynchus milii ^c				KT187485	KT187404	CI145 ^d	X
Family Chimaeridae							
Chimaera monstrosa ^c	NC003136						
Chimaera phantasma ^c		JN184088	JN184130		AB095987		
Hydrolagus affinis				KT187502	KT187403	MCZ162006	Х
Family Echinorhinidae							
Echinorhinus cookei				KT187494	KT187467	ABTC100720	Х
Family Heterodontidae							
Heterodontus francisci ^c	NC003137						
Heterodontus francisci ^c		JN184089				BJ_540e	
Heterodontus mexicanus ^c		011101003	JN184131			BJ_690e	
Heterodontus francisci ^c					KT187405	ABTC101370	X
Family Havenshides							
Family HexanchidaeHeptranchias perlo				KT187497	KT187470	ABTC96351	v
nepiranenias perio				K110/49/	K110/4/U	AD1C70331	X
Family Lamnidae							
Carcharodon carcharias				KT187486	KT187464	ABTC69275	Х
Family Mitsukurinidae							
Mitsukurina owstoni ^c	NC011825						
Mitsukurina owstoni ^c		JN184090	JN184132				

Taxon	mt genome	RAG1	SCFD2	ND4	POMC	Voucher	this study
Family Orectolobidae							
Orectolobus ornatus				KT187511	KT187471	ABTC78364	Х
Family Pristiophoridae							
Pristiophorus nudipinnis				KT187513	KT187474	SAMAF9448	Х
Family Scyliorhinidae							
Scyliorhinus canicula ^c	NC001950						
Scyliorhinus canicula ^c		JN184092					
Scyliorhinus retifer ^c			JN184134				
Family Squalidae							
Squalus acanthias ^c	NC002012						
Squalus acanthias ^c		JN184093	JN184135			RDM_48e	
Squalus acanthias ^c					KT187407	ABTC84201	Х
Family Squatinidae							
Squatina australis				KT187522	KT187477	SAMAF11185	X
Family Triakidae							
Mustelus manazo ^c	NC000890						
Mustelus mustelus ^c		JN184091					
Mustelus lenticulatu ^c			JN184133				
Mustelus antarcticus ^c				-	KT187406	SAMAF11156	Х

Museum abbreviations for newly added taxa follow Sabaj Perez (2013). See Aschliman et al. (2012a) for details of other specimens.

Classifications as in Aschliman et al. (2012a), except Australian taxa according to Last and Stevens (2009).

^a ABTC refers to the Australian Biological Tissue Collection of the South Australian Museum

^b Trygonorrhina fasciata in Aschliman et al. (2012a)

^cComposite taxa

^dChristopher Izzo, University of Adelaide

REFERENCE

Sabaj Perez, M.H. (editor). 2013. Standard symbolic codes for institutional resource collections in herpetology and ichthyology: an Online Reference. Verson 4.0 (28 June 2013). Electronically accessible at http://www.asih.org/, American Society of Ichthyologists and Herpetologists, Washington, DC.